DigiKey-emag- Edge AI&ML-Vol-10

Quickly implement spoofing-resistant face recognition without a Cloud connection

VIZN_RecognizeEvent(gApiHandle, face_info); } break;

static void EvtHandler(ImageFrame_t *frames[], OASISLTEvt_t evt, OASISLTCbPara_t *para, void *user_ data) { [code redacted for simplification] case OASISLT_EVT_QUALITY_CHK_COMPLETE: { UsbShell_Printf(“[OASIS]:quality chk res:%d\ r\n”, para->qualityResult); pQMsg->msg.info.irLive = para->reserved[5]; pQMsg->msg.info.front = para->reserved[1]; pQMsg->msg.info.blur = para->reserved[3]; pQMsg->msg.info.rgbLive = para->reserved[8];

{ UsbShell_DbgPrintf(VERBOSE_MODE_L2,

if (diff > 1000000 / PIT_TIMER_UNIT) { // update fps pQMsg->msg.info.recognize_fps = timeState-

“[EVT]: Blurry Face!\r\n”); }

else if (para->qualityResult == OASIS_QUALITY_

>rec_fps * 1000.0f / diff;

Listing 3. As shown in this snippet from a sample application in the NXP software distribution, an event handler processes events encountered during the face recognition sequence. Code source: NXP

RESULT_FAIL_LIVENESS_IR) {

timeState->rec_fps = 0; timeState->rec_fps_start = timeState-

UsbShell_DbgPrintf(VERBOSE_MODE_L2,

>rec_comp; } #endif

“[EVT]: IR Fake Face!\r\n”); }

verification for production.

else if (para->qualityResult == OASIS_QUALITY_

Along with the runtime environment and associated sample application code, NXP provides Android mobile apps with full java source code. One app, the VIZNAS FaceRec Manager, provides a simple interface for registering faces and managing users. Another app, the VIZNAS Companion app, allows users to provision the kit with Wi-Fi credentials using an existing Wi-Fi or BLE connection. Conclusion Face recognition offers an effective approach for authenticating access to smart products, but implementing it has typically required local high- performance computing or always-on high-bandwidth connectivity for rapid responses. It has also been a target of spoofing and is subject to concerns about user privacy. As shown, a specialized processor and software library from NXP Semiconductors offer an alternative approach that can accurately perform offline face recognition in less than a second without a Cloud connection, while mitigating spoofing attempts.

memset(pQMsg->msg.info.name, 0x0,

RESULT_FAIL_LIVENESS_RGB) {

sizeof(pQMsg->msg.info.name));

UsbShell_DbgPrintf(VERBOSE_MODE_L2,

if (recResult == OASIS_REC_RESULT_KNOWN_

“[EVT]: RGB Fake Face!\r\n”); } } break; [code redacted for simplification]

FACE)

{

if (para->qualityResult == OASIS_QUALITY_

RESULT_FACE_OK_WITHOUT_GLASSES ||

std::string name; UsbShell_DbgPrintf(VERBOSE_MODE_L2,

para->qualityResult == OASIS_QUALITY_

RESULT_FACE_OK_WITH_GLASSES) {

“[OASIS]:face id:%d\r\n”, id);

case OASISLT_EVT_REC_COMPLETE: { int diff; unsigned id = para->faceID; OASISLTRecognizeRes_t recResult = para- >recResult;

DB_GetName(id, name); memcpy(pQMsg->msg.info.name, name.c_

UsbShell_DbgPrintf(VERBOSE_MODE_L2,

“[EVT]:ok!\r\n”); }

str(), name.size());

face_info.recognize = true; face_info.name = std::string(name); UsbShell_DbgPrintf(VERBOSE_MODE_L2, “[OASIS]:face id:%d name:%s\r\n”, id, pQMsg->msg. info.name); } else { // face is not recognized, do nothing UsbShell_DbgPrintf(VERBOSE_MODE_L2, “[OASIS]:face unrecognized\r\n”); face_info.recognize = false; }

else if (OASIS_QUALITY_RESULT_FACE_SIDE_

FACE == para->qualityResult) {

UsbShell_DbgPrintf(VERBOSE_MODE_L2,

timeState->rec_comp = Time_Now(); pQMsg->msg.info.rt = timeState->rec_start -

“[EVT]:side face!\r\n”); }

timeState->rec_comp; face_info.rt

else if (para->qualityResult == OASIS_QUALITY_

= pQMsg->msg.info.rt;

RESULT_FACE_TOO_SMALL) {

#ifdef SHOW_FPS

/*pit timer unit is us*/ timeState->rec_fps++; diff = abs(timeState->rec_fps_start - timeState-

UsbShell_DbgPrintf(VERBOSE_MODE_L2,

“[EVT]:Small Face!\r\n”); }

>rec_comp);

else if (para->qualityResult == OASIS_QUALITY_

RESULT_FACE_BLUR)

we get technical

42

43

Powered by